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Homogeneous turbulence decay in a stably stratified flow has two distinct characteristics. 
One is countergradient fluxes that are developed to keep the energy budget in equilibrium. 
Another is the formation of gravity waves that contribute to the velocity variance with little 
vertical mixing. The prediction of these characteristics are investigated using a hierarchy of 
turbulence models. They include second-order models as well as models that solve the 
transport equations for the turbulent kinetic energy, its dissipation rate, the temperature 
variance and its dissipation rate. In the latter class of models, the vertical heat flux is 
calculated either from an algebraic equation or from a transport equation. The algebraic 
equation is derived by invoking equilibrium and nonequilibrium turbulence assumption. 
Thus, modeling level and the relative importance of nonequilibrium and history effects in 
the predictions of countergradient fluxes and gravity waves could be assessed. The 
investigation reveals that countergradient heat flux can be predicted even when the 
equilibrium assumption is invoked. However, the formation of gravity waves can be 
predicted only when the history effects of the vertical heat flux are accounted for properly. 
The decay rate of the total energy is very much affected by two model constants in the 
temperature variance dissipation rate equation. On the other hand, the calculated fre- 
quency and amplitude of the gravity waves are influenced by the model constants in the 
heat flux equation. © 1997 by Elsevier Science Inc. 
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Introduction 

Stably stratified turbulent  flow is a common occurrence in the 
atmospheric surface layer and in the ocean. Usually the flow is 
influenced by four different forces; inertia, viscous, buoyancy, 
and shear forces. Even when there is no mean shear, turbulence 
in a stably stratified flow still behaves quite differently from that 
in a nonbuoyant  flow. This is because gravity causes anisotropy in 
the horizontal and vertical velocity variances and their associated 
length scales. Furthermore,  under  stable stratification, counter- 
gradient fluxes develop to keep the energy budget in equilibrium, 
and oscillations are formed in the evolution of the Reynolds 
normal stress aligned with the gravity vector, the temperature  
variance, and the turbulent  vertical heat flux. These oscillations 
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can be interpreted as an exchange of energy between turbulent 
kinetic energy and potential  energy associated with the tempera- 
ture variance, and these are known as internal gravity waves. The 
formation of the gravity waves leads to reduced vertical mixing 
and the ultimate collapse of turbulence (Stillinger et al. 1983; 
Itsweire et al. 1986; Metals and Herring 1989). Numerous experi- 
ments have been carried out to investigate homogeneous turbu- 
lence decay in a stably stratified flow. Among the more notable 
experiments are those of Lienhard and van Atta (1990), Yoon 
and Warhaft  (1990), and Barrett  and van Atta (1991). Their  
measurements  clearly indicate the presence of countergradient 
fluxes but are not as conclusive on the formation of gravity 
waves. On the other hand, direct numerical simulations (DNS) of 
such flows have also been carried out by a number  of re- 
searchers, including the shear flow study of Gerz et al. (1989), 
the shear and uniform flow investigations of Gerz and Schumann 
(1991), and the uniform flow study of van Haren et al. (1994). 
These investigations clearly indicate the development of counter- 
gradient fluxes and the formation of gravity waves. 

Recent investigations have shown that the initial stages of the 
evolution of homogeneous turbulence in a stably stratified 
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medium can be calculated fairly accurately using a k-e- type 
model based on an equilibrium assumption (Sommer and So 
1995). In the early stages of decay, the agreement  between 
calculations and measurements  (Lienhard and van Atta 1990) is 
comparable to the result of a much more complicated full 
second-order model (Kolovandin et al. 1993). Particularly, coun- 
tergradient heat  flux is reproduced by the k-e- type model. In the 
later stages of the evolution, however, the model of Kolovandin 
et al., in agreement  with experimental data, predicts the forma- 
tion of gravity waves. Such predictions are absent from the 
k-e- type model though. 

A number  of simplifications have been made in the develop- 
ment of the model of Sommer and So (1995). The most impor- 
tant one is the assumption of equilibrium turbulence, which 
facilitates the derivation of an algebraic relation for the turbu- 
lent heat flux. In reality, the turbulence for the case studied is 
not in equilibrium. The reason for the discrepancy in the latter 
stages could, therefore, be attr ibuted to the equilibrium turbu- 
lence assumption. If this assumption is the culprit, then a 
nonequil ibrium algebraic relation for the turbulent  heat flux 
could capture the oscillations. On the other  hand, history effects 
in the evolution of the turbulent  vertical heat  flux might be very 
important ,  as indicated by the studies of Kolovandin 
et al. (1993), van Haren (1993), and Craft et al. (1994). 

van Haren (1993) used several one-point closure models to 
calculate a flow case and compared the results with the DNS 
data of van Haren et al. (1994). The DNS data, similar to the 
experimental data of Lienhard and van Atta (1990), exhibits the 
formation of gravity waves. A simple k - e  model invoking a 
constant turbulent  Prandtl number  (Pr t) fails to replicate any of 
the important  physics, an observation consistent with the findings 
of Sommer and So (1995). van Haren (1993) proposed an "ex- 
tended k e model"  and a "s tandard second-order model" to 
calculate the stably stratified flow and found that both models 
capture the oscillations, and give a reasonably overall agreement  
with data. However, they predict an oscillation frequency that is 
lower than that determined from the DNS data. Both these 
models solve a transport  equation each for the turbulent  vertical 
heat flux, the dissipation rate, and the potential energy associ- 
ated with the temperature  variance, while the dissipation of 
potential energy is calculated assuming a constant time scale 
ratio. The main difference between the two models is that the 
"standard second-order model"  solves separate equations for the 
individual Reynolds stresses while the "extended k - e  model" 
only solves an equation for the turbulent kinetic energy and 
evaluates the normal velocity variance in the heat flux equation 
assuming isotropy. Finally, van Haren (1993) used the second- 
order model of Craft and Launder  (1991) and managed to 
reproduce the correct oscillation frequency. This closure solves a 
separate equation for the dissipation of potential energy rather 
than modeling it as in the "standard second-order model." How- 
ever, it gives a wrong split between kinetic and potential energy. 

Use of second-order models to calculate this stably stratified 
flow has also been at tempted by Craft et al. (1994). Their  model 
solves the full set of Reynolds-stress and Reynolds-heat-flux 
equations, the dissipation rate, and the potential energy equa- 
tion. The dissipation of the potential energy is modeled rather  
than determined by solving its t ransport  equation. Buoyancy is 
accounted for in the following manner.  First, the additional 
explicit term in the dissipation rate (e) equation is modeled by 
the proposal of Launder  (1989) and setting the additional con- 
stant equal to C~: 1, the constant in the modeled destruction term 
of the nonbuoyant  e-equation. Second, the pressure-strain (Hgj) 
and pressure-scrambling (qbi0) terms in the Reynolds-stress and 
Reynolds-heat-flux equations are decomposed into three parts; a 
slow (return-to-isotropy) part, a rapid (mean strain) part, and a 
buoyant part, which arises as a result of the buoyancy force 

acting on the turbulence field. Either simple or fully realizable 
models can be assumed for the slow, rapid, and buoyant parts of 
Hij and ~bi0. However, in their model, fully realizable models are 
invoked for all three parts of ll~j and abe0. Their  investigations 
show that the model improvements give rise to internal gravity 
waves whose amplitude and frequency are in good agreement 
with the DNS data of van Haren et al. (1994). 

This discussion shows that there are a number  of models with 
different assumptions that are, to varying degrees, successful in 
replicating the physics of homogeneous decaying turbulence in a 
stably stratified medium. It is, however, unclear which features 
allow certain models to be more successful than the others. 
Particularly, the following questions are open: Does the failure 
of the model of Sommer and So (1995) to reproduce the oscilla- 
tions arise from the equilibrium assumption? Could a nonequi- 
librium algebraic model capture the gravity waves? ls the better  
agreement  in the oscillation frequency predicted by the model of 
Craft and Launder (1991) due to the fact that a separate equa- 
tion for the dissipation of potential energy is solved? Or, is the 
better  agreement due to the solution of turbulence equations 
where the models assumed are fully realizable? 

These questions are difficult to answer because the differ- 
ences between the various models are too large. This study 
attempts to provide some answers by using a hierarchy of models 
based on the same basic transport  equations. The baseline model 
is the second-order model of Lai and So (1990) together with 
transport  equations for the potential energy and its dissipation 
rate. A hierarchy of models, ranging from the equilibrium alge- 
braic model of Sommer and So (1995), a nonequilibrium model 
derived in a similar manner  and a series of second-order models 
with different assumptions invoked for the time-scale ratio can 
be deduced from the basic set of equations. The various models 
thus derived would allow the different effects, k e-type t'ersus 
second-order models, equilibrium cersus nonequilibrium assump- 
tion and history of the heat flux evolution, to be investigated in a 
systematic manner.  In the following, the hierarchy of equations 
for the second-order and k-e- type models is presented first. This 
is followed by a discussion of the model predictions of the stably 
stratified flow experiment of van Haren et al. (1994). An attempt 
is made to assess the relative importance of the various assump- 
tions made to derive the models and their impact on the calcula- 
tions of countcrgradient fluxes and gravity waves. 

Equations for the second-order models 

The baseline model equations are the same as those used by Lai 
and So (1990) to derive their near-wall model. Because of buoy- 
ancy, additional equations are necessary for the potential energy 
and its dissipation rate. There are also some extra model terms 
in the Reynolds stress and heat-flux equations. Many of the 
model terms have been suggested by Launder (1976). If the 
nomenclature of van Haren (1993) is adopted, then the following 
can be defined. These are the normalized heat flux G, the 
Brunt -Vaisa la  frequency N, the potential energy Epo~, and the 
normalized dissipation rate of the potential energy e j .  They 
are defined by G =(g6/N)w-O, N =  [g[3(d®/dz)] I/2, Ept, t = 

(gf3/N)202/2 and e 7, = (g{3/N)2eo, where z is the normal coor- 
dinate, g is the gravitational constant, 13 is the coefficient of 
expansion of the fluid, ® and 0 are the mean and fluctuating 
temperature,  w~ is the normal heat flux, 02 is the temperature 
variance, and e 0 is the dissipation rate of ~ .  Thus simplified, the 
model equations, for the case of homogeneous turbulence in a 
stratified medium and in the absence of mean shear, can be 
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written as 

m ,.2 2 )  2 2 
dt - C l  k -~- "~k - -~e + C3-~NG (i) 

m 

d t C1- ' k  7"2 - -3 k - "3 e + C 3 "3 N G 

dw 2 

dt 

e 2 
- - = - C I - 1 ~ ( ~ - 2 k ) - 2 e + ( 2 - 2 C 3 + - ~ C 3 ) N G  

(2) 

(3) 

de 8 2 e 

d--~ = -Q2--~ + Q3-~ NG (4) 

the time-scale assumed in the modeling of the pressure-scram- 
bling vector in the G-equation. The former assumes a velocity 
time-scale alone; while, the latter invokes a mixed time-scale 
characteristic of both the velocity and thermal field. Thus, a 
comparison of the performance of these two models would shed 
light on the relative importance of mixed versus velocity time 
scale only in the modeling of the transport  equation for G. 

A third model solves Equations 1-5 and 7, but replaces 
Equation 6 by a model for the dissipation of potential energy, e r.  
The model for e r is given by 

[ Epot 
eT = R ( - - l ~ -  ) e  (9) 

depot 
dt N G  - -  e T 

de r e S T e 
dt Cdx e r  N G -  C d 2 ~ N G -  - -  - -  Cd5-~e T 

- -  = -- 2Epo t CO4 2Epo t eT 

(5) 

(6) 

dG e 
--dt  = - w E N  - -  C10 ~-G + 2N(1 - C20)Epo t (7) 

where k = (u 2 + u 2 + w2) /2  is the turbulent  kinetic energy, u, u, 
and w are fluctuating velocities along the x, y, z-coordinates, and 
e is the dissipation rate of k. The model constants are the same 
as those assumed by Sommer and So (1995) and lie within the 
range suggested by Launder  (1976). Their  values are: C 1 = 1.5, 
C 3 = 0.3, Q 2  = 1.83, Q 3  = 1.5, C10 = 3.0, and C:0 = 0.4. As for 
the constants Cdl, Cd2, Cd4, and Cds, Lai and So (1990) suggested 
the following values; 1.8, 0, 2.2, and 0.8, respectively. However, it 
will be seen later that the constants Cd~ and Cd2 have a signifi- 
cant influence on the prediction of the total energy decay rate. 
Their  correct values differ from those given above. For easy 
reference, this model is designated as LS/VTS.  

An alternative model can be derived by using a mixed time 
scale in the heat-flux Equat ion 7, which then becomes 

(8) d G ~ ~ k k  e r 
d--~ = - w ~ N  - C1° 2Ep ot G + 2N(1 - C20)Epot 

In this case, the constant C10 has to be modified compared to 
the LS model. If the rationale of So and Sommer (1996) is used 
to assess its value C10 = 3.28 is obtained. The second-order 
model comprised of Equations 1-6 and 8 is designated as 
L S / M T S  for easy reference henceforward. It should be pointed 
out that the only difference between L S / V T S  and L S / M T S  is in 

where R = ( e T / E p o t ) / ( e / k )  is the time-scale ratio, and its value, 
taken from van Haren (1993), is R = 1.5. This model is labeled as 
L S / F R .  A comparison of the performance of L S / F R  with 
L S / V T S  could shed light on the relative importance of solving a 
transport  equation for e r.  

Comparisons are also made with the calculations of the 
one-point closure model of van Haren  (1993) and Craft et al. 
(1994). The equations solved in the van Haren model are the 
same as the L S / F R  model discussed above. However, the model 
constants assumed are different, and they are given as: C 1 = 1.5; 
C 3 = 0 .5;  C e 2  = 1.76; C e 3  = 1.44; C1o = 4.0; and f E e  = 0.33. This 
model is designated as V H / F R  for easy reference. Thus, a 
comparison of the performance of L S / F R  and V H / F R  reveals 
the effects of the various constants assumed for the modeled 
equations. On the other  hand, the equations solved in the Craft 
et al. model are similar to those given in Equations 1-7. The 
exceptions are those models assumed for Il i j ,  qbi0, and e r .  Fully 
realizable models are invoked for IIq and ~i0. As a result, other  
heat-flux equations are also solved in addition to Equation 7. 
Equat ion 6 is not solved; instead e r is modeled assuming the 
time-scale ratio R in Equation 9 to be replaced by R, which is 
not constant but depends on the heat-flux correlation coefficient. 
The expression assumed by Craft et al. is /~ = 3(1 +A20) /2 ,  
where A20 = u~ i0 ) ( -~ / (k02) .  This model is designated as 
C I L / V R  for easy reference. In summary, the various models 
compared are tabulated in Table 1. 

Equations for the k-E-type models 

T h e  k - e  model of Sommer and So (1995) consists of solving four 
transport  equations for k, e, 02 and e 0 plus an explicit algebraic 
equation for the vertical heat  flux. Of the four transport  equa- 
tions, the equations for Epo t and e r are identical to Equations 5 
and 6 with the constants as specified in LS/VTS.  The equations 

Table 1 Summary of the different second-order and k-e-type models 

Second-order models k-e-type models 

LS/VTS LS/MTS LS/FR VH/FR CIL/VR EAHF/E EAHF/NE KE/THF 

Vel. eqs. 1-4  1 -4  1-4  1-4  1-4 1 O, 11 1 O, 11 1 O, 11 
Temp. 5, 9 

eqs. 5 ,6  5 ,6  5 ,9  5 ,9  /~ 5 ,6  5 ,6  5 ,6  
replaces 
R i n 9  

Heat-flux 7 plus 
Eqs. 7 8 7 7 others if 13 14 7 

required 

Int. J. Heat and Fluid Flow, Vol. 18, No. 1, February 1997 31 



Nonequilibrium and history effects of homogeneous turbulence: T. P. Sommer et aL 

for k and e can be written in terms of the present parameters  as 

dk 
- e + N G  ( 1 0 )  

dt 

d e  e e 

dt - C~2f~k e + C~3-£ N G  (11) 

where the constants assume values given above for L S / V T S  and 
f~ = 1 - 0 . 2 2 e x p [ - ( R e t / 6 )  2 ] is a damping function introduced to 
give a correct prediction of the final decay of k and e in isotropic 
turbulence. Here, the turbulence Reynolds number  is defined as 
Re t = k2 /ve .  The algebraic equation for the heat flux is derived 
from the simplified transport  equation, which can be written as 

( P  - e )  + -------~- (2/50 - 2e o) f i  
o ~ 

O0 aUi FE t o _ _  
= - u i u  ) -  - ~ j O - -  - C l o V ~  uiO 

Oxj Oxj 

au,. 
C2ouTO--  + C3ogi[3-~ - gif3~ 

Oxj 
(12) 

where the transport  terms are approximated by invoking the 
similarity assumption between the transport  of heat fluxes and 
the transport  of k and 0 -2. In Equation 12,/5 = _ uiuj(OUi/Oxj ) is 

the production of k due to mean shear; /50 = - ~ i O ( aO / Ox i )  is 
the production of 0 2 due to mean temperature  gradient; and U~ 
and x i are the i th component  of the mean velocity and coordi- 
nates, respectively. Equilibrium turbulence for both the velocity 
and thermal fields is assumed by Sommer and So (1995). Conse- 
quently, the left-hand side of Equat ion 12 is identically zero, and 
the right-hand side can be further  simplified by approximating 
the flux terms associated with the mean gradients by gradient 
t ransport  models. The result written in terms of the present 
parameters  is 

Ep°t N 2(1 -- C20) . ~/-~"ff Epo t 
G = - C x k ' l / z ~  + V . e  NEpo t 

eT C10 ET V ~ 

(13) 

where C~ = 0.095 is a model constant assumed for the eddy 
thermal diffusivity. This model is designated as E A H F / E .  

The nonequil ibrium algebraic heat-flux model can be derived 
by following the procedure outlined in Sommer and So (1995), 
with one excep t ion- - tha t  is not to assume the left-hand side of 
Equat ion 12 to be zero. Thus derived, the equation for the heat 
flux can be written as 

G =  [ - C x k l ~  N + 
[ V ~ ~1 

2(1 - C2o) 

Clo 

2C x k2N 2 2 ( k s r 

1 + C10 e e r  C10 2e Epo ~ 

• NEpo t ] x 

c,oVT 7 ) 
(14) 

The nonequil ibrium model, designated as E A H F / N E ,  comprises 
Equations 5, 6, 10, 11, and 14. It differs from E A H F / E  in that 
nonequil ibrium effects in the velocity and thermal fields are 
accounted for in the derivation of the vertical heat flux. How- 

ever, history effects in the evolution of the normal heat flux are 
not taken into account. These effects could be accounted for by 
solving the heat-flux transport  Equat ion 7 together with Equa- 
tions 5, 6, 10, and 11. To close the set of equations, an additional 
assumption must be invoked, and this is the isotropic behavior of 
the velocity field. In other words, w 2= 2 k / 3  is assumed in 
Equation 7. This model is labeled K E / T H F .  Such a modified 
k - e  modeling approach has also been investigated by van Haren 
(1993) and Craft et al. (1994). The present model differs from 
their models in the choice of the constants assumed and in the 
modeling of the dissipation rate equations. These models are 
also listed in Table 1 for easy reference. 

Results and discussion 

The test case considered here is taken from the numerical 
experiment of van Haren et al. (1994). The initial flow field 
consists of homogeneous, isotropic turbulence. At t - 0, a con- 
stant vertical temperature  gradient is applied. The interaction of 
the turbulence with the temperature gradient leads to the gener- 
ation of temperature fluctuations; i.e., to increasing potential 
energy, until the potential energy reaches a maximum. From this 
point on, oscillations in both potential and kinetic energy occur, 
with a maximum in kinetic energy coinciding with a minimum in 
potential energy. The total energy; i.e., the sum of the kinetic 
and potential energy, decays with a rate slightly smaller than that 
for the nonbuoyant,  isotropic case (van Haren et al. 1994). The 
initial conditions are given by van Haren (1993) as k o = 0.414, 
e o = 0.495, v = 0.005, so that Re t - 6925, and the Brunt-Vaisa la  
frequency is N - ~r. The potential energy and its dissipation rate 
are zero initially. However, to avoid numerical problems, the 
potential energy is set to a very small value (10 9) at t = 0, and 
e 7. is set assuming R = 1. Besides this case, the L S / M T S  model 
is also used to calculate a DNS case where N = w/3.  This case 
has the same initial conditions as the N = 7r case. Thus, the two 
cases together will shed light on the effect of Froude number.  
Numerical tests showed that the results did not exhibit a great 
sensitivity to the initial values of the potential energy and its 
dissipation rate, provided they are small enough. The governing 
modeled equations are solved using a Runge-Kut ta  method with 
adaptive step size control (Press et al. 1986) to obtain accurate 
results with the minimum amount of computational effort. The 
present objective is to investigate systematically the parameters 
that contribute to a successful calculation of the development of 
countergradient fluxes and the formation of gravity waves. 
Therefore, in addition to evaluating the calculations with the 
DNS data of van Haren et al. (1994), comparisons with the 
predictions of van Haren (1993) and Craft et al. (1994) are also 
carried out. Furthermore,  the effects of the model constants, 
Cdl . . . . .  Cd5 , and (~;10 and C20, on the calculations are examined 
in detail. 

The first set of results is from the k-e- type models. In this 
set, the calculations of the models E A H F / E ,  E A H F / N E ,  and 
K E / T H F  are compared with the DNS data of van Harcn ct al. 
(1994) for the case N - ~ r .  The calculations of E A H F / E  and 
E A H F / N E  are performed with Ca1 1.8 and Cd2 = 0, as speci- 
fied above. As shown by Sommer and So (1995), these constants 
would give rise to countergradient heat flux with the E A H F / E  
model, and the results are in good agreement with the measure- 
ments of Lienhard and van Atta (1990). The results of the total 
( E t o  t = k + Epot ) ,  kinetic k and potential ene rgy  Epm calculated 
from the E A H F / E ,  E A H F / N E ,  and K E / T H F  models are shown 
in Figures 1, 2 and 3, respectively. Two sets of results are shown 
for the K E / T H F  model in Figure 3; one set is obtained using 
Cdl -- 1.8 and Cde -- 0, while another  set is given by Cdl -- 0 and 
Cd2 -- 1.2. Vertical heat flux results from the three models and 
the DNS data are plotted in Figure 4 for comparison. It should 
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Comparison of the  evolution of Eto t, k and Eoo t 
data. 

be mentioned that, in the course of obtaining the E A H F / N E  
solutions, a straightforward application of Equation 13 would 
lead to an unrealistically low Epo t result; 3-4  orders of magni- 
tude lower than what it should be. The source of the problem is 
traced to the similarity assumption used to derive Equation 12. 
The calculations for this case, therefore, indicate that there 
might not be any similarity between the transport of heat and the 
transport of k and 0 2. Consequently, the calculations with 
E A H F / N E  are carried out by assuming nonequilibrium of the 
velocity turbulence field alone, and the results are shown in 
Figures 2, 4, and 5. This is equivalent to taking the second term 
on the left-hand side of Equation 12 to be zero. Thus modified, 
the second and third terms in the second bracketed term of 
Equation 14 are equal and thus cancelled out each other. In the 
E A H F / E  and E A H F / N E  predictions, the growth of Epo t is too 
rapid and its maximum occurs too early (Figures 1 and 2). After 
reaching the maximum Epot, there are no oscillations, and the 
decay is too rapid• The absence of oscillations is also apparent in 
the vertical heat flux, shown for both models in Figure 4. There 
is a small region of countergradient heat flux which, just as the 
maximum potential energy, occurs too early. The nonequilibrium 
assumption, therefore, does not provide visible improvement to 
the calculation of this case. Thus, both models are unable to 
predict the N = ~r case correctly. 

10°" ~ Et°t]E0 k]k 

~ o o 
=o . . . .  O ~ ° o  O~oo 
~ 1 0  -1_ 
• ~ o Epot]k0 

o N=~ 

EAHF/NE 
o van Hatenet al (1994) 

10 -2 
' ' ' ' ' ' ' ' 1  ' ' ' ' ' ' " 1  ' ' ' ' ' ' " 1  
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Figure  2 Comparison of the  evolution of Eto t, k a n d  Epo t 
with DNS data. 

Together, these results show the effects of nonequilibrium 
turbulence and the importance of accounting for the evolution 
history of the heat flux on the prediction of homogeneous 
turbulence decay in a stably stratified medium. The formation of 
gravity waves is predicted only when the heat-flux transport 
equation is solved. It is found that the c o n s t a n t s  C d 4  and Cd5 do 
not affect the behavior of the oscillations, but Cdl and Cd2 do. 
Essentially, varying Col and Cd2 change the frequency and 
period of the predicted oscillations, albeit slightly. However, 
C m = 0 and Cd2 = 1.2 seem to yield the correct decay rate for 
Etot/Eo, where E o is the initial total energy. Therefore, in spite 
of the incorrect predictions of the frequency and period of the 
oscillations, overall, the choice of Cdl = 0 and Cd2 = 1.2 gives 
better results. On the other hand, if Co1 = 0 and Cd2 = 1.2 are 
used in the E A H F / E  and E A H F / N E  models, the calculated 
extent of the small region of countergradient heat flux decreases, 
while the predicted decay rate of Etot/Eo is in much better 
agreement with the data (Figure 5a). Identical results for this 
case are also given by any one of the second-order models and 
K E / T H F  listed in Table 1. The calculated decay rates of E t o t / E  o 

for the N =  ~r/3 case using V H / F R ,  L S / F R ,  LS/MTS,  
K E / T H F ,  and E A H F / E  models are shown in Figure 5b. Be- 
cause the model predictions of E A H F / E  and E A H F / N E  are 
essentially identical, only the result of E A H F / E  is plotted in 
Figure 5b. In this case, the model calculations are in poor 
agreement with the DNS data. However, the calculated decay 
rate of all the models tested does approach the asymptotic 
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behavior, a slope of -1 .4 ,  correctly at large Nt /2~r .  This ap- 
proach to the slope of - 1 . 4  is not in agreement  with the DNS 
data, however, because the data show a much earlier approach to 
this asymptotic state. Therefore, it can be said that all the models 
tested do not perform as well for the N = ~r/3 case as for the 
N = ar case. 

At  this point, a comment  is in order on the model constants 
Cd~ and C~2. In accordance with the findings of the k - e - t ype  
models, the correct decay rates of k and Epot are predicted if, 
and only if, Cdl = 0 and Cd2 = 1.2 are used in the model. There- 
fore, they are different from those suggested by Sommer and So 
(1995) for wall turbulence. These new values are consistent with 
those suggested by Jones and Musonge (1988) and Craft and 
Launder (1989) for free turbulence. They assumed Cdl = 0 and 
Cd2 to be 1.7 and 1.3, respectively. It appears that Cd~ = 0 and 
Cd2 = 1.2 are more appropriate for free turbulence. 

Having evaluated the relative importance of nonequil ibrium 
and history effects, the next task is to assess the merits, or lack 
thereof, of second-order modeling. The components  of Eta t, k, 
and Epo t as calculated using the L S / V T S  model are given in 
Figure 6. It can be seen that the results are in good agreement 
with DNS data, particularly, the evolution of Epo t up tO its 
maximum, and the location of the maximum is well captured. 
The mean decay of k and Epo t are close to the DNS results, as 
well. There is a slight discrepancy in both the magnitude and the 
frequency of the oscillations. This can also be observed in the 
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Figure 6 Compar i son  of the  evolut ion of Eta t, k and  Epo t 
wi th  DNS data.  

calculated heat flux (Figure 7). The frequency of the oscillations 
is slightly lower compared to that determined from the DNS 
data. 

The importance of solving a transport  equation for e T is 
investigated next. This requires the comparison of the calcula- 
tions obtained from the L S / V T S  and L S / F R  models. The re- 
sults are plotted in Figures 8 and 9. Comparing the different 
plots for the N = -rr case (Figures 6-9), it can be seen that the 
differences between the various model predictions are, again, not 
very significant. In fact, the overall agreement  of L S / F R  predic- 
tions with DNS data is about as good as those deduced from 
L S / V T S  and LS/MTS.  This comparison shows that the solution 
of a transport  equation for e r  is not crucial to the prediction of 
stably stratified flows. An algebraic model for e~ will suffice. 

The relative importance of a velocity versus a mixed time-scale 
in the prediction of the oscillations is examined by comparing the 
results obtained from L S / V T S  and LS/MTS.  Results of these 
calculations are plotted in Figures 10 and 11. Two cases are 
presented in Figure 11; they are the N = ' r r  and N = ~r/3 case, 
shown separately in parts (a) and (b) of the figure. The calculated 
results of the L S / V T S  and L S / M T S  models are shown together 
with those of C I L / V R  and the DNS data, whenever they are 
available. These data are extracted from their respective papers. 
It can be seen that  L S / V T S  and L S / M T S  essentially give the 
same results. In general, the models perform bet ter  for the 
N = "rr case than for the N = i r / 3  case (see Figure 5b for decay 
rate). Furthermore,  the amplitude of the oscillations obtained 
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from the L S / M T S  model is larger than that deduced from the 
L S / V T S  model, however, the frequency is about the same (Fig- 
ures 10 and 11). This comparison shows that the time-scale 
invoked in the modeling of the pressure-scrambling term in the 
heat-flux equation has little or no effect on the prediction of 
stably stratified turbulent flows. On the other hand, relaxing the 
isotropic assumption in the heat-flux equation has a very signifi- 
cant effect on the prediction of the oscillations, their amplitude 
and frequency (compared Figures 3, 6, and 10). This means that a 
second-order model is critical to the successful prediction of 
stably stratified turbulent flows. 

The effect of IIq and qbio modeling on the prediction of the 
oscillations can be studied by comparing the calculations of 
L S / M T S  with those of C I L / V R .  These two closures not only 
differ in the models assumed for IIq and ~ 0 ,  but also in the 
modeling of e r. While L S / M T S  solves Equation 6, C I L / V R  
invokes an algebraic model for e r .  Because the effect of model- 
ing e r is not important in the prediction of the oscillations, the 
variations noted in the L S / M T S  and C I L / V R  results could then 
be attributed to the different IIq and qbi0 models invoked. The 
result for one case is compared in Figure 11. Overall, C I L / V R  
gives a slightly more accurate predictions of the amplitude and 
frequency of the oscillations. Therefore, the fully realizable Hq 
and qbio models used in C I L / V R  do provide an advantage over 
the much simpler I l i j  and qbi0 models adopted by Lai and So 
(1990). 
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Finally, the influence of the model constants C10 and C2o on 
the prediction of the oscillations is examined. The first compari- 
son is carried out with two different models, V H / F R  and L S / F R ,  
which assume C10 = 4.0 and CIo = 3.0, respectively. The results 
for the N = ~ case are shown in Figures 9 and 12. It can be seen 
that the V H / F R  model yields an oscillation amplitude and 
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frequency quite different from those deduced from the DNS 
data. Furthermore, the calculated amplitude and frequency of 
the oscillations are also different from those determined from 
L S / F R ,  which are in better agreement with the data (see Figures 
8 and 9). It appears that a decrease of C10 by 25% is sufficient to 
obtain an oscillation frequency and amplitude that agree about 
as closely with the data as the results van Haren (1993) obtained 
using the model of Craft and Launder (1991). The effect of 
varying C10 using the same model, LS /MTS,  is shown in Figures 
13a and 13b. The values of C10 are chosen as 3.28 and 3.00, while 
all other model constants are kept the same as before. It can be 
seen that, for both cases, decreasing C~0 reduces the amplitude 
of the oscillations slightly, and there is a very small effect on the 
calculated frequency. These effects seem to be independent of 
N. On the other hand, the effect of C20 on the calculation of the 
oscillations is examined in Figures 14a and 14b. In this calcula- 
tion, C10 = 3.00 is chosen, and all other model constants in 
L S / M T S  remain unchanged, except C2o, which takes on a value 
of 0.4 and 0.1, respectively. The results show that decreasing C20 
improves the predicted frequency of the oscillations but not the 
amplitude. Again, the effects seem to be independent of N. 
However, there is really no justification to assume C20 = 0.1. 

Conclusions 

Three k-e-type models and three second-order models derived 
from the same set of basic equations are used to assess the 
relative importance of the following simplifications in the predic- 
tion of homogeneous turbulence decay in a stably stratified 
medium. They are the equilibrium, nonequilibrium, and isotropic 
assumptions and the evolution history of the vertical heat flux. 
Furthermore, the study also examines the necessity of solving a 
transport equation for e T and the effects of the model constants 
invoked in this equation and the vertical heat-flux equation on 
the calculations. The E A H F / E  and E A H F / N E  models fail to 
reproduce the essential physics of the turbulence. Particularly, 
they are unable to reproduce the oscillations associated with the 
exchange of energy between turbulent kinetic and potential 
energy. Thus, it is not sufficient to account for nonequilibrium 
effects alone in the calculation of stably stratified flows. All 
models solving a transport equation for the heat flux, on the 
other hand, predict the formation of gravity waves or the exis- 
tence of the oscillations. However, the assumption of turbulence 
isotropy renders the predictions of the oscillation frequency and 
amplitude incorrect, as can be seen from the results of K E / T H F  
compared with LS/VTS.  It can, therefore, be concluded that 
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Figure 13 (a) Comparison of the evolution of w0 with DNS 
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C2o. 

gravity waves can only be predicted correctly if history effects are 
taken into account, and turbulence isotropy is not assumed. The 
results show further that it is not essential in this case to solve a 
separate equation for e r ;  it is sufficient to model its behavior 
algebraically. Furthermore, the present investigation reveals that 
the model constants Cjl and Cd2 affect the calculated total 
energy decay, while the constant Cl0 has a greater effect on the 
predicted oscillation amplitude than on its frequency. On the 
other hand, the constant C2( ~ affects the calculated frequency but 
not the amplitude. If C 2 0 -  0.1 is chosen, the calculated fre- 
quency is in good agreement with the N - ' r r  case. However, 
there is no justification to decrease C2o substantially to 0.1. In 
view of these findings, it can be concluded that the model 
L S / F R  with R = 1.5 and Cl0 = 3.0 performs just as well as the 
model LS/VTS.  Finally, comparisons are also made with the 
model results of Craft et al. (1994). Their closure differs in the 
modeling of the pressure-strain tensor and pressure-scrambling 
vector, which are given by fully realizable models, and in the 
treatment of the dissipation rate of the potential energy. Al- 
though their predictions are in better agreement with DNS data 
in terms of both the amplitude and frequency of the oscillations, 
the slight improvements do not justify the adoption of much 
more complicated pressure-strain and pressure-scrambling mod- 
els. 
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